

Innovation Forum – Renewable Energies German-Polish cooperation for Innovations and sustainable development Poznań, POLEKO, 25 November 2009,

Status and perspectives of development of renewable power engineering in Poland, research priorities and possibilities of financing

Grzegorz Wiśniewski

Institute for Renewable Energy

gwisniewski@ieo.pl

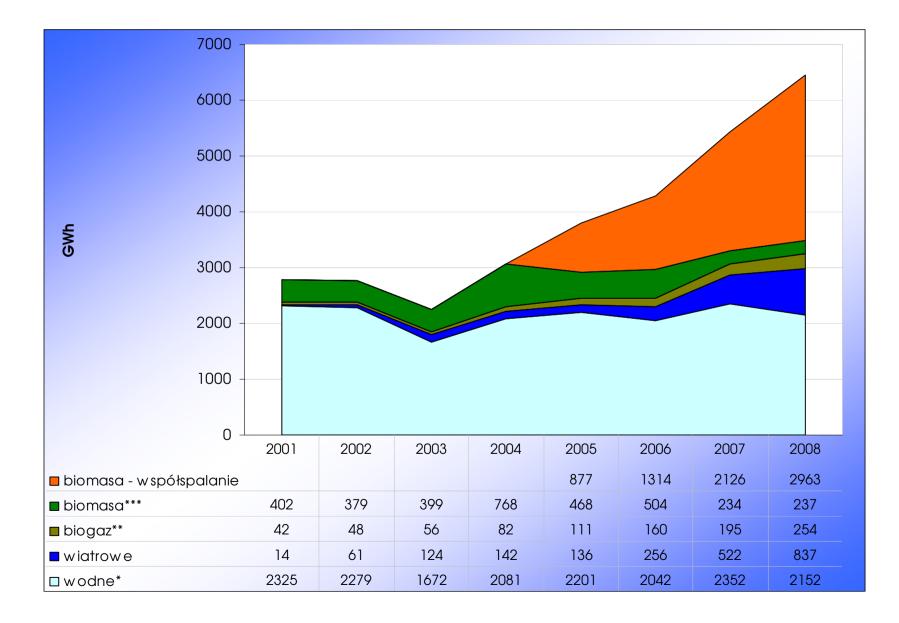
Potential and possibilities of using renewable energy sources in Poland until 2020

Renewable energy resources:

Point of departure for plan of actions for RES until 2020 and further...

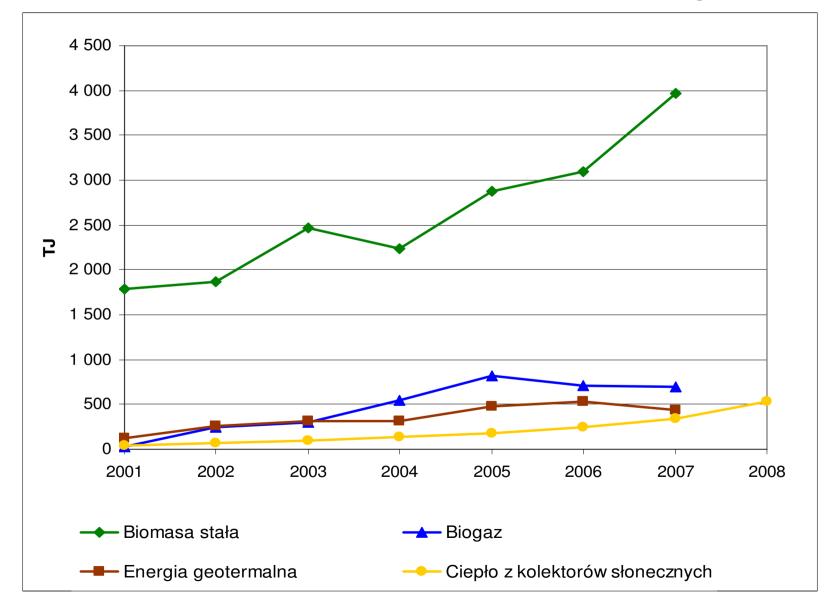
Real economical potential of renewable energy resources and state of its use for the year 2006

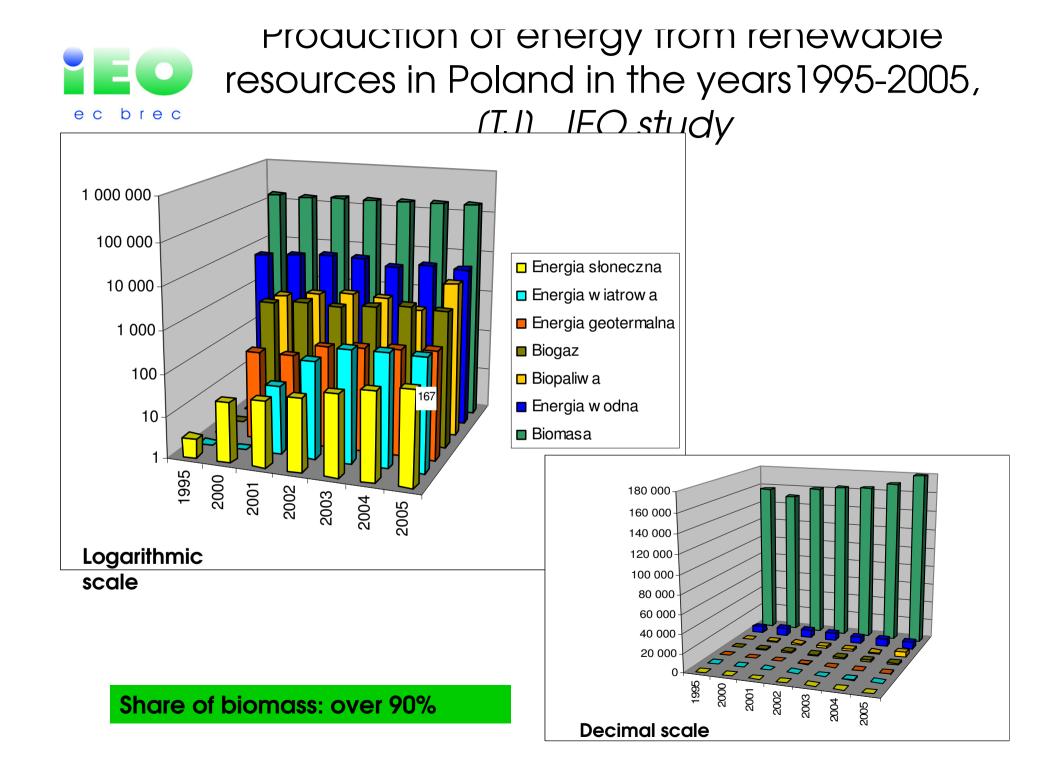
Potential of renewable energy resources	Real economical potential – final energy	State of using the economical potential for the year 2006	
Types of renewable energy resources	(TJ)	(TJ)	(%)
Solar power industry including:	83 3 12,2	149,8	0,18%
thermal, including:	83 152,9	149,6	0,18%
hot water preparation	36 491,9	149,6	0,41%
central heating	46 66 1,0	0,0	0,00%
photovoltaic	159,3	0,2	0,11%
Geothermal energy, including:	12 367,0	1 535,0	12,4%
deep	4 200,0	535,0	12,7%
shallow	8 167,0	1 000,0	12,2%
Biomass, including:	600 167,8	192 097,0	32,0%
solid dry waste	165 930,8	160 976,2	97,0%
biogas wet waste)	123 066,3	2 613,0	2,12%
fuel wood (forests)	24 451,8	24 451,8	100,0%
energy farming, including:	286 7 18,9	4 056,0	1,41%
cellulose	145 600,0	0,0	0,00%
sugar-starch-bioethanol	21 501,0	2 558,0	11,90%
rape-biodiesel	37 980,0	1 498,0	3,94%
corn silage-biogas	81 637,9	0,0	0,00%
Water power engineering	17 974,4	7 351,2	40,90%
Wind power engineering, inclufding:	444 647,6	921,6	0,21%
land	377 242,5	921,6	0,24%
sea	67 405,0	0,0	0,00%
Total:	1 158 469	202 055	17,4%

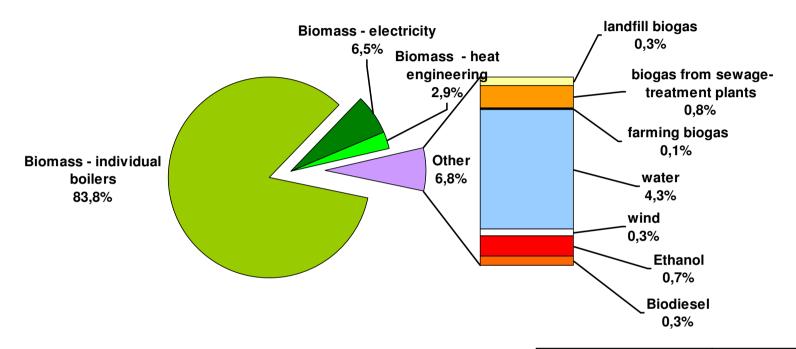


What have we achieved in the present decade until 2010,

and what are the challenges for 2020?




Development of green electric energy production in Poland Source: GUS and ARE, IEO study



Development of green heat production acc. to GUS and IEO (solar energy)

Consumption of RES energy (176 PJ) constituted **7,2%** of the total final energy used and it was dominated by biomass (94%) and heat (90%)

In other UE countries, share of the biomass is much lower and on average it comes to about 60% (below 50% in Germany)

RES energy carrier 2005	TJ	%
Electric energy	15 111	8,6
biofuels	1 937	1,1
green heat	159 467	90,9
Total RES	176 515	100,0

Selected elements of the 2009/28/EC directive on promotion of using renewable energy sources

- 1. For the first time in history, each UE member state was given its target amount for the year 2020, (**UE-20% PL-15%**), which is a mandatory goal (legally binding under pain of punitive sanction)
- Until 2010-06-30, the governments must prepare national action plans (NAP) for RES, demonstrating in detail how do they intend to meet their goals;
- 3. Two or more UE countries can complete **joint projects** (also infrastructural, particularly in the case of trading energy with other countries from outside EU) and make an agreement regarding distribution of the "green" energy. The European Commission will create a website, on which the member states will be able to offer joint projects and so-called **"statistical transfers**" of RES energy surpluses or deficiencies in comparison to the national target values.
- 4. Priority of RES access to electrical power networks, enhancing current regulations, e.g. the 2001/77/EC directive, including: in justified cases fill costs of network development on account of operators, promoting intelligent networks, energy storing, and financial support for development of electric power networks (including heat distribution and gas network important for promotion of biogas)
- 5. Active **participation of local governments** in creation and implementation of RES is provided for

How will the achievement of "15% for 2020" goal for Poland be calculated

c b r e c acc. to **2009/28/EC** directive on promotion of using power from Renewable Energy S

$$15\% = \frac{OZE_{C} + OZE_{E} + OZE_{B} + OZE_{ZWW}}{FZE + PW + S}$$

power industry

<mark>The package favours</mark>

<mark>in the whole ,</mark>

- **COZEC** -consumption (~production) of green heat (TJ)
- OZEE -consumption (~production) of green electric energy (

CZEB -consumption (~production) of biofuels (TJ)

OZE_{ZWW} - consumption of biomass for the needs of renewable energy sources and secondary energy – derivative energy (e.g. heating charges in biogas-works with heat recovered from biogas engine) (TJ)

FZE -final energy consumption (TJ)

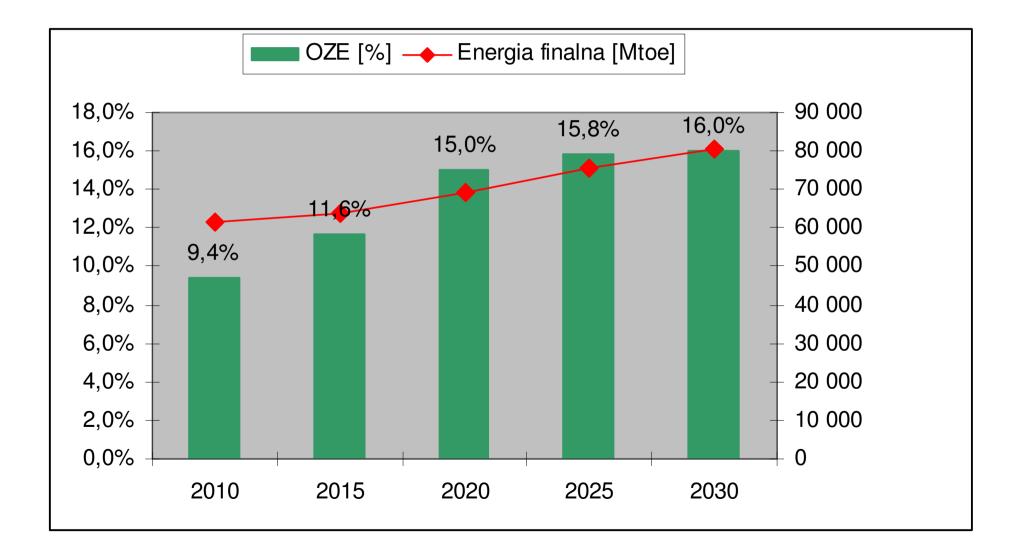
PW -consumption of energy for the needs of the power engineering sector (TJ)

S -losses of fuel and energy during transfer and distribution (TJ)

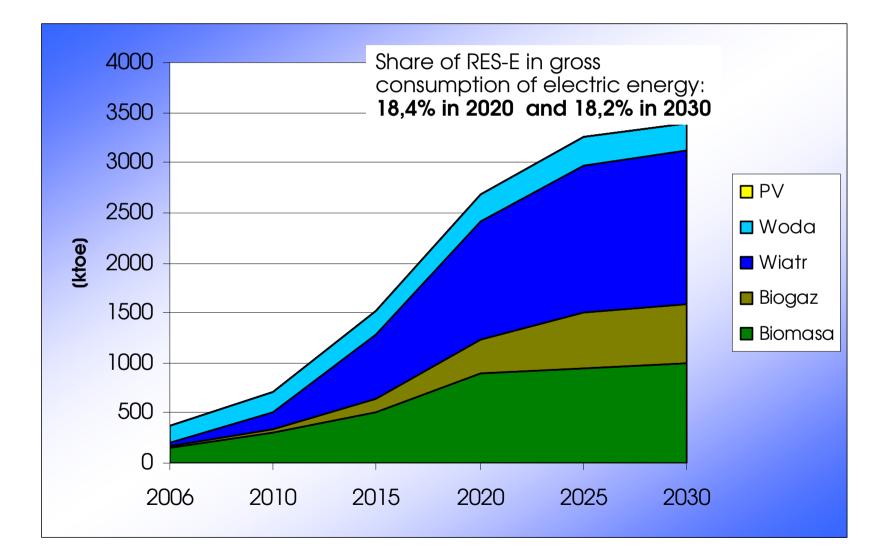
Projekt z dnia 18-08-2009

Ministerstwo Gospodarki

Wersja 4

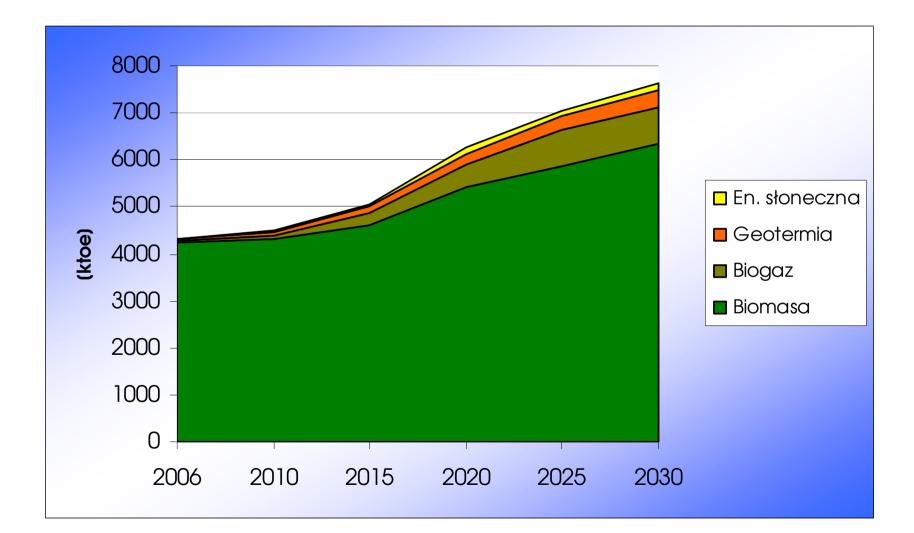

Polish energy policy until 2030 adopted on 10 November 2009

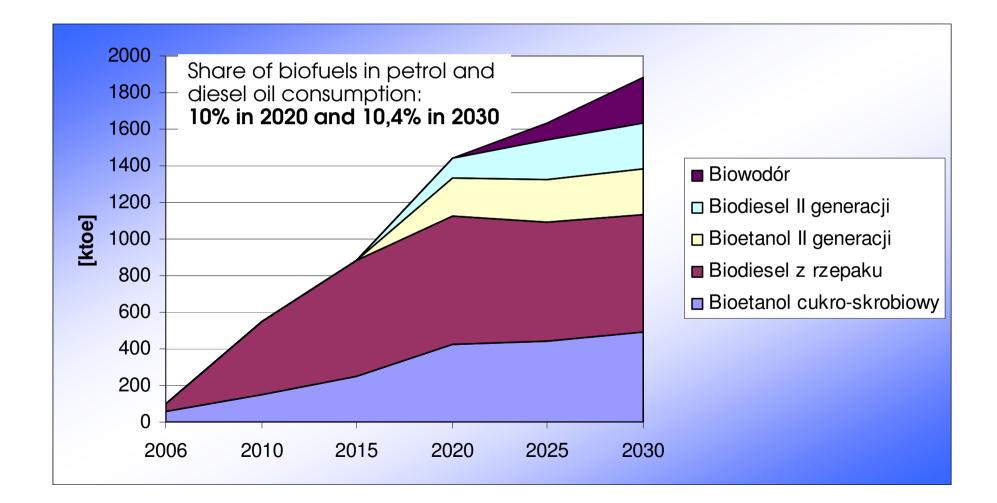
Załącznik 2.


do projektu "Polityki energetycznej Polski do 2030 roku"

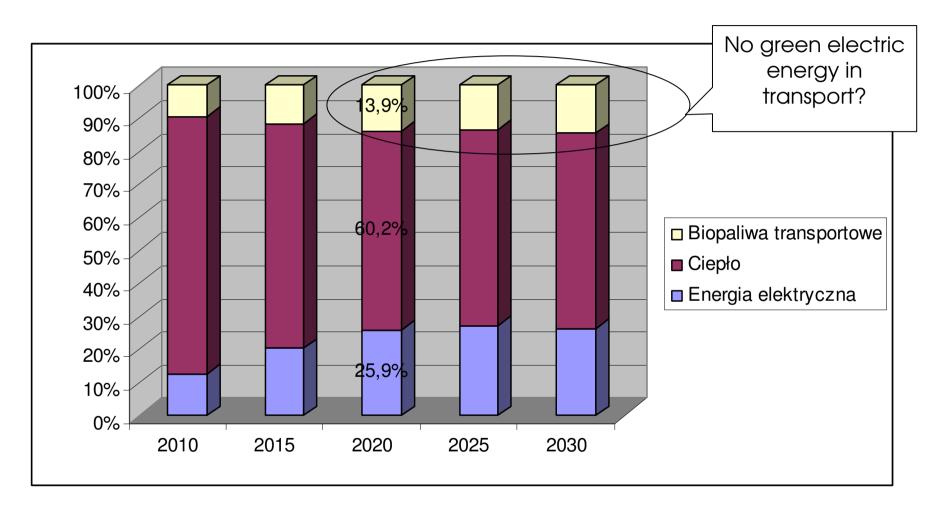
Warszawa, sierpień 2009 r.

Share of RES acc. to the "Polish energy policy until 2030" (PEP `2030)





PEP'2030: prognosis for green heat



PEP'2030: prognosis for biofuels

Gross demand for final energy from RES acc. to PEP'2030 (ktoe) and for lands (tys. ha) using analyses of Prof. A. Fabera, IUNG

	0000		Required land surface '2020,
Energy types	2006	2020	thousands of hectares
Electric energy	370,6	2686,6	
Electric energy Solid biomass Biogas biomass Wind Share of biomasi water in completion of biomasi Heat 2020 is to reach solid biomass a3%	159,2	892,3	351-587
Biogas chore of Etion O.	13,8	344,5	38-76
wind in completion	22	1178,4	
water the 15% s reduct	175,6	271,4	
Heat 2020 IS 10	4312,7	6255,9	
solid biomass 83%	4249,8	5405,9	<2076
biogas	27,1	503,1	55-110
geothermal	32,2	221,5	
solar	3,6	125,4	
Transport biofuels	96,9	1444,1	
sugar-starch bioethanol	61,1	425,2	605
biodiesel from rape	35,8	696,8	774
second generation bioethanol	0	210	61-94
second generation biodiesel	0	112,1	18-28
Total final energy RES/cultivation surface	4780,2	10386,6	1903 - 4350
Share of renewable source energy / share of			

What does the 2009/28/EC directive say about sustainability of biomass consumption?

Production of farming raw materials and their conversion into liquid biofuels and energy meets the criteria of sustainable production.

- For liquid and gas biofuels, the criterion is an obligation to prove, using the **LCA** method (Life Cycle Analysis) that liquid fuels will reduce emission of greenhouse gases in the whole production chain by 35% in 2013, by 50% in 2017, and by 60% in 2018 (currently, bioethanol produced from grains and biodiesel made from rape do not meet the requirement of greenhouse gas emission reduction by *2017*)
- Use of green electric energy in transport is promoted (the multiplier for achieving the directive goal by using green electric drives is 2.5 times higher than for use of biofuels)
- Due to their biodiversity and various forms of protection, some areas are excluded from production of biomass for the power engineering purposes
- In the case of biomass, the member states promote conversion technologies the energy conversion effectiveness of which is at least 85 % for residential and commercial applications, and at least 70 % for industrial applications (in practice this excludes cocombustion of biomass in coal power plants)



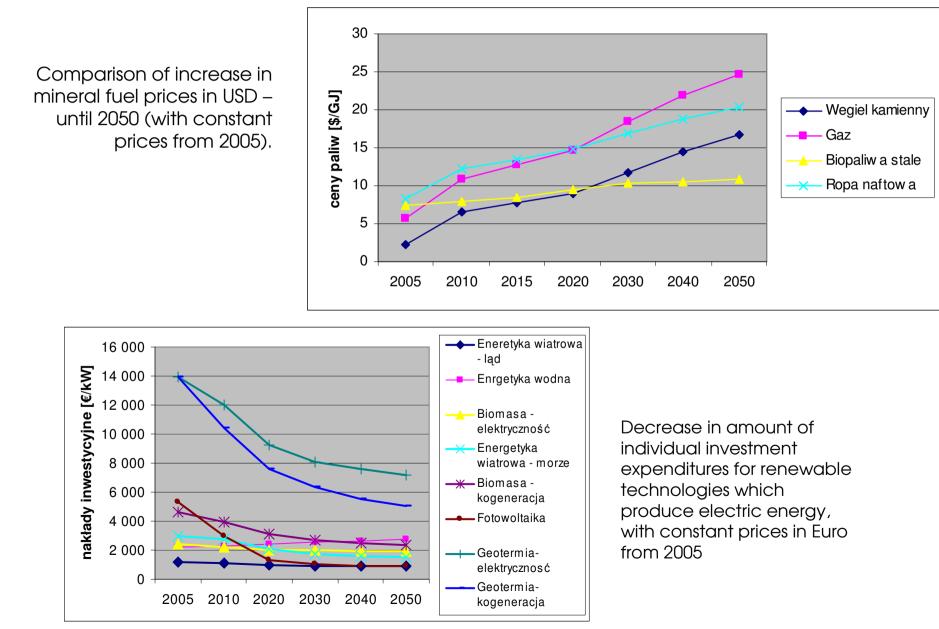
Bold and environmentally sustainable vision of plan of actions in favour of RES until 2020, with a perspective until 2050

Modelling renewable power engineering development scenarios until 2050 – September 2008

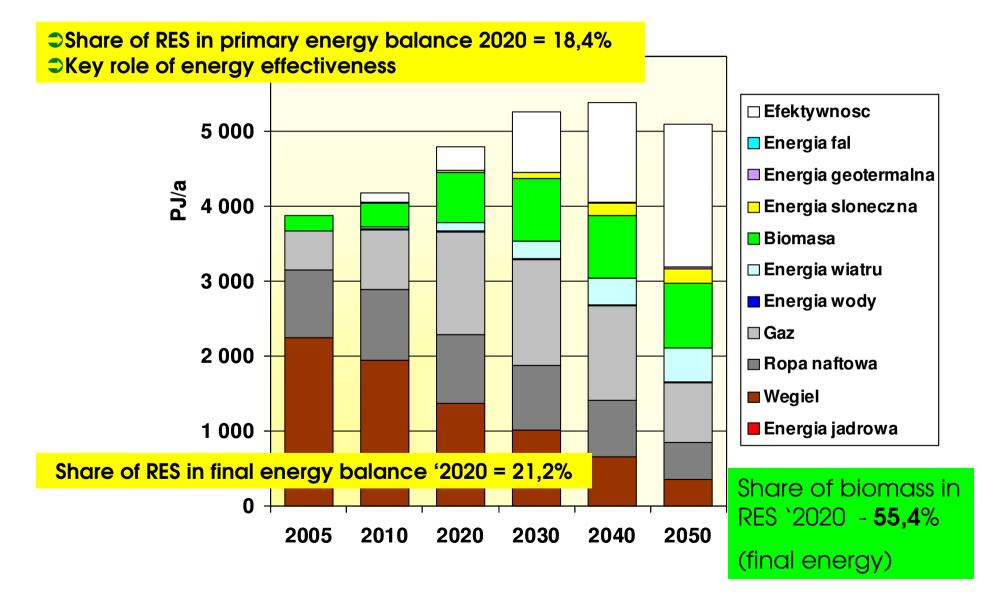
Energy (R)evolution = time to change ... thinking in and about power industry?

Using the MASEP/Markal model to simulate the RES development scenarios until 2050, considering 2020

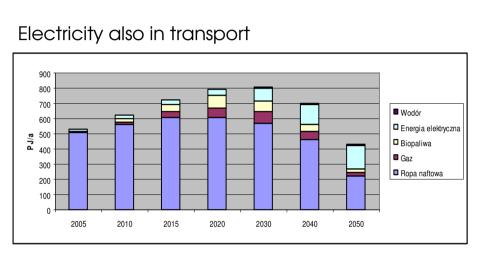
"Scenario of providing Poland with clean energy carriers in a long—term perspective"

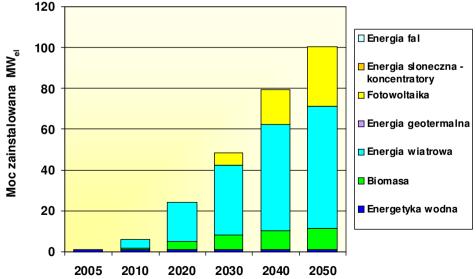

EC BREC Institute for Renewable Energy DLR Space Research and Technical Thermodynamics Institute in Stuttgart

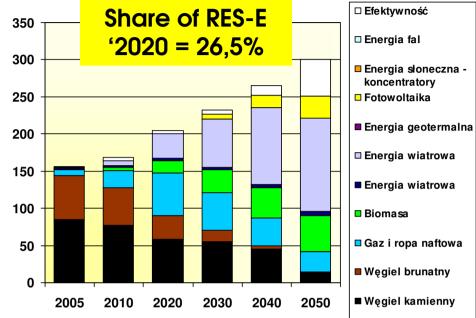
Published by **Greenpeace Poland**, October '2008


http://www.greenpeace.org/raw/content/poland /press-centre/dokumenty-iraporty/rewolucja-energetyczna-polska.pdf

Assumptions for scenarios -II

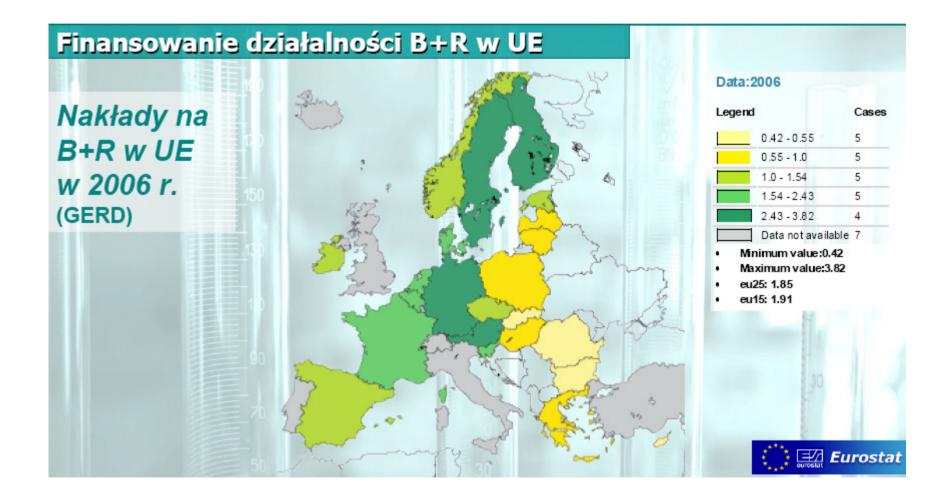


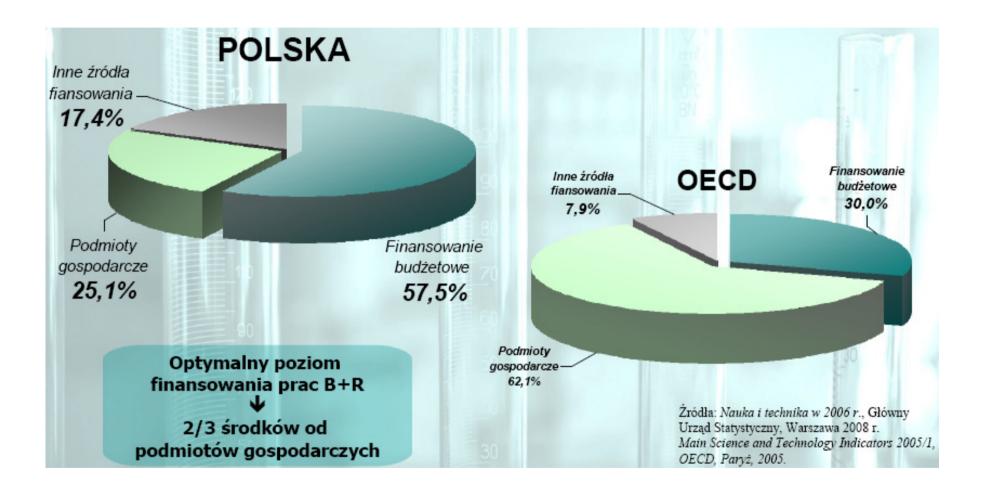




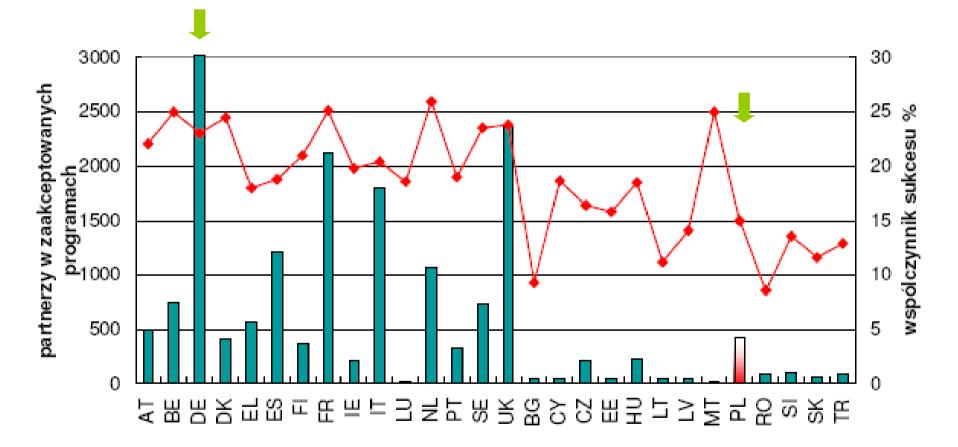
Electric energy in TWh/year in the *Energy* [*R*]evolution scenario

Great significance of wind power industry




Scientific research and innovations in renewable power industry and financing them

Financing of B+R activity in EU



Large share of financing from the budget, small share of financing by business entities, great significance of EU funds ("other sources of financing" on the chart)

Number of programs approved for completion divided into countries (partners) and global success rate in 6 PR EU

Source: "Polityka MNil w odniesieniu do udziału polskich zespołów Naukowych w Programach Ramowych UE", Warszawa 2006

Operational Programme Innovative Economy

Action 1.4 Support for research and special purpose projects in favour of companies – 390 million euro (for research),

Action 4.2 support for implementation of B+R programs – 390 million Euro (for investments)

Operational Programme Infrastructure and Environment

Action 10.3 Development of industry for renewable energy sources – allocation of 91 million Euro (including EU contribution of 27 million Euro)

Principles of subsidizing in EU and national programmes for innovations

	Subsidizing level	Minimal value of qualified expenses	Deadline for application s	Implementi ng institution
10.3 Development of industry for RES, OPI&E	up tp 70%	20 million	III/IV quarter 2009	IPiEO
1.4-4.1Support for research and development and implementation of works results, OPIE	30-70% depending on status and region	400 thousand	01.11-30.11 2009	PARP
4.3 Technological credit, OPIE	40-70% - technological bonus	-	Permanent	BGK
4.4 New investments of high innovative potential, OPIE	40-70% depending on the region	8 million	28.09- 30.10.2009	PARP
Special purpose projects NOT	50-80%	-	Cyclically every 6 months	NOT
IniTech	100%- research stage, 50%- industrial research. 25%	-	Announced cyclically	NCBIR

Current financing of power industry programmes by Ministry of Science

Source: Jerzy Tokarski – NCBiR

Projects	Start	End	Total subsidizing	Completed projects
Research	2002-2007	2006-2010	21 400 000	4 300 000
Special purpose	2000-2008	2001-2010	12 100 000 47 900 000	1 800 000 2 600 000
Commission ed Research *	2007	2010	32 9000 000	32 9000 000
Development	2006-2007	2008-2010	18 200 000	15 800 000
			84 600 000	54 800 000

* In the years 2007-2010, one research project, ordered from the RES scope entitled "Modern technologies for power industry application of biomass and bio-degradable waste – conversion into energy gas fuels" is financed. Coordinator: Institute of Power Engineering

Decision of Minister of Science and Higher Education on establishing a National Scientific Research and Development Works Programme of **2008-10-30**

and on implementation of the Programme by the National Centre for Research and Development (NCBR)

Priority research areas:

- 1. Research area- "Society under conditions of safe, fast and sustainable social-economic development"
- 2. Research area "Health"
- 3. Research area "Energy and infrastructure,
- 4. Research area "Modern technologies for economy"
- 5. Research area "Environment and agriculture"

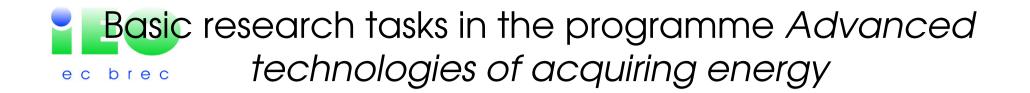
Research area no. 3 in (KPBNiPR): Energy and infrastructure

3.3. DEVELOPMENT OF ALTERNATIVE ENERGY SOURCES – RENEWABLE NUCLEAER, BASED ON HYDROGEN, AND OF NEW TECHNOLOGIES LEADING TO INCREASE IN RELIABILITY, EFFECTIVENESS OF PRODUCTION, PROCESSING, STORAGE AND TRANSFER OF ENERGY

3.3.1 Development of safe and ecological technologies of production and storage of energy from renewable sources (combustion and gasification of biomass, integrated systems – steam and gas micro power plants, bio-refineries and biogas-works, using wind, geothermal and water source solar power engineering, fuel cells).

.

Strategic programme *** "Advanced technologies of acquiring energy"


Carried out on behalf of MNIISW by NCBiR

"The is mostly oriented at results of those scientific research which have the highest chances of being applied and fully implemented. It exposes Polish scientific and technological specialities, basing on the main fuel raw material which is, and continues to be, coal, as well as aon alternative energy sources."

GOALS:

The goal of the strategic program is to carry out the *3x20 Strategy*, included in the European Commission announcement of 2007-01-10, which assumes that until 2020, in the total EU balance, in comparison to 1990, it is necessary to:

- 1. Improve energy effectiveness by 20%,
- 2. Increase share of renewable energy up to 20%.
- 3. Reduce CO2 emission by 20%.

The programme budget is PLN 300 million.

- 1. Technologies which increase effectiveness of electric power production
- 2. Technologies of oxy-combustion of coal for effective and lowemission production of electric energy
- 3. Technology of coal gasification for highly-effective production of energy and fuels

4. Technologies of renewable power engineering, including alternative

The first announced research task in the scope of renewable power engineering: **"Development of integrated technologies of producing fuels and energy from biomass, farming waste and other waste**"

Summary

- The domestic potential of renewable energy sources makes it possible for the share of energy from renewable sources in the balance of final energy consumption oin Poland to reach over 21% in 2020, and almost 60% in 2050.
- 2. The 2009/28/EC directive on promotion of RES is a good solution for Poland it is an ambitious challenge, but absolutely possible to achieve by 2020.
- 3. Although Poland is not among the EU leaders in respect of innovativeness and resources for B+R, demonstrates one of the highest dynamics of increase in financing of science and innovative potential
- 4. Power engineering, including renewable power engineering, is becoming gradually more important in research programmes
- 5. There is a lot of potential for international cooperation in renewable power engineering (e.g. biogas, wind and solar power enaineerina) and reaardina innovations in this

Thank you for your attention

Questions/contact: gwisniewski@ieo.pl

Additional documents and discussion:

- <u>www.ieo.pl</u> (news)
- www.odnawialny.blogspot.com)